L. On Hamilton's quadratic equation and the general unilateral equation in matrices
نویسندگان
چکیده
منابع مشابه
stability of the quadratic functional equation
In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...
متن کاملStability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
متن کاملOn the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملOn the Stability of Quadratic Functional Equation
Aoki,T. , (1950) "On stability of the linear transformation in Banach spaces," Journal of the Mathematical Society of Japan, 2,64-66 Chang, S. and Kim,H. M. , (2002), On the Hyer-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math. , 33, 1-12. Chang,S. , Lee,E. H. and Kim,H. M. , (2003)On the Hyer-Ulam Rassias stability of a quadratic functional equations, Math. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
سال: 1884
ISSN: 1941-5982,1941-5990
DOI: 10.1080/14786448408627619